Part Number Hot Search : 
BTW68200 08GT8CB B200026 2TRPB 74ACT16X SC417 TAA761 1N1200C
Product Description
Full Text Search
 

To Download IRHLNJ797034SCS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  absolute maximum ratings parameter units i d @v gs = -4.5v,t c = 25c continuous drain current -22* i d @v gs = -4.5v,t c = 100c continuous drain current -14.9 i dm pulsed drain current  -88 p d @ t c = 25c max. power dissipation 57 w linear derating factor 0.45 w/c v gs gate-to-source voltage 10 v e as single pulse avalanche energy  79 mj i ar avalanche current  -22 a e ar repetitive avalanche energy  5.7 mj dv/dt peak diode recovery dv/dt  -12.3 v/ns t j operating junction -55 to 150 t stg storage temperature range pckg. mounting surface temp. 300 (for 5s) weight 1.0 (typical) g pre-irradiation c a radiation hardened irhlnj797034logic level power mosfet surface mount (smd-0.5)  www.irf.com 1 60v, p-channel technology product summary part number radiation level r ds(on) i d irhlnj797034 100k rads (si) 0.072 ? 22a* irhlnj793034 300k rads (si) 0.072 ? 22a* for footnotes refer to the last page smd-0.5 features:  5v cmos and ttl compatible  fast switching  single event effect (see) hardened  low total gate charge  simple drive requirements  ease of paralleling  hermetically sealed  ceramic package  surface mount  light weight international rectifiers r7 tm logic level power mosfets provide simple solution to interfacing cmosand ttl control circuits to power devices in space and other radiation environments. the threshold voltage remains within acceptable operating limits over the full operating temperature and post radiation. this is achieved while maintaining single event gate rupture and single event burnout immunity.these devices are used in applications such as current boost low signal source in pwm, voltage comparator and operational amplifiers.  
  2n7624u3 pd-97302b downloaded from: http:///
irhlnj797034, 2n7624u3 pre-irradiation 2 www.irf.com for footnotes refer to the last page source-drain diode ratings and characteristics parameter min typ max units t est conditions i s continuous source current (body diode) -22* i sm pulse source current (body diode)  -88 v sd diode forward voltage -5.0 v t j = 25c, i s = -22a, v gs = 0v  t rr reverse recovery time 110 ns t j = 25c, i f = -22a, di/dt -100a/ s q rr reverse recovery charge 132 nc v dd -50v  t on forward turn-on time intrinsic turn-on time is negligible. turn-on speed is substantially controlled by l s + l d . a note: corresponding spice and saber models are available on international rectifier web site. electrical characteristics @ tj = 25c (unless otherwise specified) parameter min typ max units test conditions bv dss drain-to-source breakdown voltage -60 v v gs = 0v, i d = -250 a ? bv dss / ? t j temperature coefficient of breakdown -0.055 v/c reference to 25c, i d = -1.0ma voltage r ds(on) static drain-to-source on-state 0.072 ? v gs = -4.5v, i d = -14.9a resistance v gs(th) gate threshold voltage -1.0 -2.0 v v ds = v gs , i d = -250 a ? v gs(th) / ? t j gate threshold voltage coefficient 3.5 mv/c g fs forward transconductance 16 s v ds = -10v, i ds = -14.9a  i dss zero gate voltage drain current -1.0 v ds = -48v ,v gs = 0v -10 v ds = -48v, v gs = 0v, t j = 125c i gss gate-to-source leakage forward -100 v gs = -10v i gss gate-to-source leakage reverse 100 v gs = 10v q g total gate charge 36 v gs = -4.5v, i d = -22a q gs gate-to-source charge 10 nc v ds = -30v q gd gate-to-drain (miller) charge 18 t d (on) turn-on delay time 32 v dd = -30v, i d = -22a, t r rise time 250 v gs = -5.0v, r g = 7.5 ? t d (off) turn-off delay time 100 t f fall time 85 l s + l d total inductance 4.0 ciss input capacitance 2261 v gs = 0v, v ds = -25v c oss output capacitance 583 p f f = 1.0mhz c rss reverse transfer capacitance 91 na  nh ns a measured from the center of drain pad to center of source pad 
  r g gate resistance ? f = 1.0mhz, open drain thermal resistance parameter min typ max units test conditions r thjc junction-to-case 2.2 c/w 20 downloaded from: http:///
www.irf.com 3 pre-irradiation irhlnj797034, 2n7624u3 international rectifier radiation hardened mosfets are tested to verify their radiation hardness capabil-ity. the hardness assurance program at international rectifier is comprised of two radiation environments. every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the to-3 package. both pre- and post-irradiation performance are tested and specified using the same drive circuitry and testconditions in order to provide a direct comparison. radiation characteristics international rectifier radiation hardened mosfets have been characterized in heavy ion environment for single event effects (see). single event effects characterization is illustrated in fig. a and table 2. fig a. typical single event effect, safe operating area for footnotes refer to the last page table 1. electrical characteristics @ tj = 25c, post total dose irradiation  parameter upto 300k rads (si) 1 units test conditions min max bv dss drain-to-source breakdown voltage -60 v v gs = 0v, i d = -250a v gs(th) gate threshold voltage -1.0 -2.0 v gs = v ds , i d = -250a i gss gate-to-source leakage forward -100 na v gs = -10v i gss gate-to-source leakage reverse 100 v gs = 10v i dss zero gate voltage drain current -1.0 a v ds = -48v, v gs = 0v r ds(on) static drain-to-source  on-state resistance (to-3) 0.076 ? v gs = -4.5v, i d = -14.9a r ds(on) static drain-to-source on-state  v sd diode forward voltage  -5.0 v v gs = 0v, i d = -22a resistance (smd-0.5) 0.072 ? v gs = -4.5v, i d = -14.9a 1. part numbers irhlnj797034, irhlnj793034 table 2. typical single event effect safe operating area let ener g y ran g ev d s ( v ) ( mev/ ( m g /cm 2 )) ( mev ) ( m ) @vgs= @vgs= @vgs= @vgs= @vgs= @vgs= 0v 2v 4v 5v 6v 7v 38 5% 300 7.5% 38 7.5% -60 -60 -60 -60 -60 -40 62 5% 355 7.5% 33 7.5% -60 -60 -60 -60 -60 - 85 5% 380 7.5% 29 7.5% -60 -60 -60 -60 - - -70 -60 -50 -40 -30 -20 -10 0 01234567 bias vgs (v) bias vds (v) let=38 5% let=62 5% let=85 5% downloaded from: http:///
irhlnj797034, 2n7624u3 pre-irradiation 4 www.irf.com   normalized on-resistance vs. temperature   typical output characteristics   typical output characteristics    typical transfer characteristics 15 0.1 1 10 100 1000 -v ds , drain-to-source voltage (v) 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20 s pulse width tj = 150c vgs top -10v -5.0v -4.5v -4.0v -3.0v -2.7v -2.5v bottom -2.3v -2.3v 0.1 1 10 100 1000 -v ds , drain-to-source voltage (v) 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20 s pulse width tj = 25c vgs top -10v -5.0v -4.5v -4.0v -3.5v -3.0v -2.5v bottom -2.3v -2.3v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) v gs = -4.5v i d = -22a 22 . 533 . 544 . 55 -v gs , gate-to-source voltage (v) 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) v ds = -25v 60 s pulse width t j = 150c t j = 25c downloaded from: http:///
www.irf.com 5 pre-irradiation irhlnj797034, 2n7624u3 fig 7. typical drain-to-source breakdown voltage vs temperature fig 8. typical threshold voltage vs temperature fig 5. typical on-resistance vs gate voltage fig 6. typical on-resistance vs drain current -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 55 60 65 70 75 - v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) i d = -1.0ma 0 10 20 30 40 50 60 70 80 -i d , drain current (a) 30 40 50 60 70 80 90 100 110 120 130 140 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 150c vgs = -4.5v 2 4 6 8 10 12 -v gs, gate -to -source voltage (v) 0 20 40 60 80 100 120 140 160 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = -22a t j = 25c t j = 150c -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 - v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = -50a i d = -250a i d = -1.0ma i d = -150ma downloaded from: http:///
irhlnj797034, 2n7624u3 pre-irradiation 6 www.irf.com   typical source-to-drain diode forward voltage 
  typical gate charge vs. gate-to-source voltage    typical capacitance vs. drain-to-source voltage  maximum drain current vs. case temperature 1 10 100 -v ds , drain-to-source voltage (v) 0 400 800 1200 1600 2000 2400 2800 3200 3600 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0123456 -v sd , source-to-drain voltage (v) 0.1 1 10 100 - i s d , r e v e r s e d r a i n c u r r e n t ( a ) v gs = 0v t j = 150c t j = 25c 0 1020304050607080 q g, total gate charge (nc) 0 2 4 6 8 10 12 - v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = -48v vds = -30v vds = -12v i d = -22a for test circuit see figure 17 25 50 75 100 125 150 t c , case temperature (c) 0 5 10 15 20 25 - i d , d r a i n c u r r e n t ( a ) limited by package downloaded from: http:///
www.irf.com 7 pre-irradiation irhlnj797034, 2n7624u3 fig 14. maximum avalanche energy vs. drain current fig 15. maximum effective transient thermal impedance, junction-to-case    maximum safe operating area 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc p t t dm 1 2 25 50 75 100 125 150 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top -9.8a -13.9a bottom -22a 1 10 100 -v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1ms 10ms operation in this area limited by r ds (on) 100 s dc downloaded from: http:///
irhlnj797034, 2n7624u3 pre-irradiation 8 www.irf.com fig 17b. gate charge test circuit fig 17a. basic gate charge waveform q g q gs q gd v g charge  d.u.t. v ds i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 16a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds v dd driver a 15v -20v       fig 16b. unclamped inductive waveforms t p v ( br ) dss i as fig 18a. switching time test circuit     
 1 
  0.1 %          + - fig 18b. switching time waveforms v ds 90% 10% v gs t d(on) t r t d(off) t f downloaded from: http:///
www.irf.com 9 pre-irradiation irhlnj797034, 2n7624u3  pulse width 300 s; duty cycle 2%  total dose irradiation with v gs bias. -10 volt v gs applied and v ds = 0 during irradiation per mil-std-750, method 1019, condition a.  total dose irradiation with v ds bias. -48 volt v ds applied and v gs = 0 during irradiation per mll-std-750, method 1019, condition a.  repetitive rating; pulse width limited by maximum junction temperature.  v dd = -25v, starting t j = 25c, l = 0.32mh peak i l = -22a, v gs = -10v  i sd -22a, di/dt -350a/ s, v dd -60v, t j 150c footnotes: ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir leominster : 205 crawford st., leominster, massachusetts 01453, usa tel: (978) 534-5776 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. 03/2012 case outline and dimensions smd-0.5 1 = drain 2 = gate 3 = source pad assignments downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRHLNJ797034SCS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X